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We report the first solid-state 87Rb NMR characterization for

rubidium cations bound to G-quartet structures formed by self-

association of guanosine 59-monophosphate and 59-tert-butyl-

dimethylsilyl-29, 39-O-isopropylidene guanosine.

Alkali metal cations such as Na+ and K+ are known to play an

important role in stabilizing G-quadruplex structures.1 Until

recently X-ray crystallography has been the only technique

available for localizing alkali metal cations in proteins and nucleic

acids. In the past several years, solid-state NMR has emerged as a

new method for detecting Na+ and K+ cations in nucleic acids and

related molecular systems.2–9 For example, we recently used solid-

state 23Na NMR to determine the mode of Na+ binding to an

Oxytricha nova telomeric DNA repeat, d(G4T4G4).
9 While K+ is

ubiquitous in biological systems, 39K (spin–3/2, natural

abundance 5 93.3%) NMR is quite difficult. It is therefore

desirable to develop a surrogate nuclear probe for K+ binding

studies. Among alkali metals, Rb+ has an ionic radius (1.48 Å)

slightly larger than that of K+ (1.33 Å). In many aspects, Rb+ can

be considered to be identical to K+. Rb+ has been widely used as a

K+ congener in both solution NMR and magnetic resonance

imaging (MRI) studies.10–13 Rb+ has also been used in crystal-

lographic studies.14–16 In the context of G-quadruplexes, Rb+ has a

binding affinity similar to K+ for the G-quadruplex structure (at

both channel and surface sites).6 It is known that 87Rb (spin–3/2,

natural abundance 5 27.8%) NMR is about 100 times more

sensitive than 39K NMR. With 87Rb isotopic enrichment (up to

99%), the sensitivity improvement of using 87Rb to replace 39K as

the NMR probe can be increased by a factor of approximately

400. It is a truly exciting prospect if solid-state 87Rb NMR can be

used as a surrogate probe for studying K+ binding in biological

systems. As a first step, here we report solid-state 87Rb NMR

characterization for Rb+ cations bound to several G-quartet

structures.

As illustrated in Fig. 1, we prepared two 59-GMP samples in this

study.{ Results from X-ray powder diffraction, solid-state 13C and
23Na NMR experiments (ESI{) suggest that both of the 59-GMP

samples are 59-GMP aggregates containing G-quartet stacks with

a distance of 3.29 Å between two adjacent stacks. The G-quartet

channel is filled with mixed Na+ and Rb+ cations. Fig. 2 shows the
87Rb magic-angle spinning (MAS) NMR spectra of G1 and G2.§

In the 87Rb NMR spectrum for G1, three groups of signals are

observed. The sharp peak at diso 5 123 ppm is due to residual

RbCl. The other two signals are associated with the two types of

Rb+ binding sites in a G-quadruplex structure: channel and surface

(or phosphate-bound) sites. This is similar to the situations in

59-GMP systems containing Na+ and K+.4,7 In solution, only an
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Fig. 1 Illustration of the sample preparation used in this study.

Fig. 2 Solid-state 87Rb MAS NMR spectra of (A) G1, (B) G2, and

(C) G3.
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averaged signal was observed in the earlier studies by Laszlo and

co-workers.17 The 87Rb NMR spectrum for G2 exhibits only one

signal having a characteristic line shape caused by the second-order

quadrupole interaction. This observation is in agreement with the

expectation that all Rb+ cations in G2 reside inside the channel. An

analysis of the observed line shape yields the following 87Rb NMR

signature for the channel Rb+ cations: diso 5 74 ¡ 2 ppm, CQ 5

5.1 ¡ 0.2 MHz, and gQ 5 0.6 ¡ 0.1. We also obtained

the following estimated parameters for the surface Rb+ cations:

diso 5 5 y 10 ppm and CQ 5 7.5 y 7.7 MHz.

To confirm the above spectral assignment, we also prepared a

G-quadruplex structure using a lipophilic guanosine nucleoside,

59-tert-butyl-dimethylsilyl-29, 39-O-isopropylidene guanosine. This

guanosine nucleoside can self-assemble into a G-quadruplex

structure in the presence of alkali metal picrates. For example, in

the presence of K+ and Cs+ picrates in a 3 : 1 ratio, the self-

assembled G-quadruplex structure consists of four stacking

G-quartets with three K+ cations residing inside the channel and

one capping Cs+ cation.18 The corresponding Rb+ complex

(denoted as G3) is expected to be isostructural to the K+ analog.

As seen from Fig. 2, the 87Rb NMR signal observed for G3 is

very similar to that for G2. Because there are three crystal-

lographically different Rb+ cations in G3, the 87Rb NMR signal

does not show any detailed line shape. Nonetheless, the 87Rb

NMR result for G3 confirms unambiguously the 87Rb NMR

spectral assignment.

The new solid-state 87Rb NMR result, coupled with previously

known NMR signatures for 23Na+ and 39K+ cations bound to a

G-quadruplex, provides us with an excellent opportunity to

examine the NMR parameters for these alkali metal cations on

a common ground. It is interesting to note from Fig. 3 that,

whereas the channel Na+ has a smaller chemical shift than does the

surface Na+, the chemical shifts for K+ and Rb+ show an opposite

trend. This observation is consistent with results for alkali metals

in ionophore complexes.19 As expected, among the three alkali

metals, the heaviest cation 87Rb+ exhibits the largest chemical shift

difference between channel and surface binding sites, ca. 60 ppm.

This demonstrates the remarkable sensitivity of 87Rb chemical

shielding to the chemical environment at the binding site. It is also

worth noting that, even at a moderate magnetic field, 11.75 T, the

observed 87Rb NMR sensitivity and resolution are already higher

than those of the 39K experiment at 19.6 T.7

In summary, our new solid-state 87Rb NMR results have

demonstrated the feasibility of this new NMR probe for studying

cation binding in G-quadruplexes. Because 87Rb has a much

higher NMR sensitivity than does 39K, we believe that 87Rb will be

a useful surrogate NMR probe for detecting K+ cation binding in

nucleic acids and ion channel proteins. Research in this direction is

under way in this laboratory.
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